# Machine Learning with NLP

**Objective:** To introduce the Machine Learning Algorithm with the help of Natural Language Processing.

**Pre-requisites:** Working knowledge of Linear Algebra, Probability Theory, Python Programming

# **Session 1 (Introduction to Deep Learning)**

- Introduction
- Linear Models for Classification
- Biological Neural Network
- Perceptron
- Perceptron Learning
- Logical XOR
- > Activation Function
- Gradient Descent

## **Session 2 (Introduction to NLP)**

- Introduction
- Operations on a Corpus
- Probability and NLP
- Vector Space Models
- Sequence Learning
- Machine Translation & Preprocessing
- Statistical Properties of Words

# **Session 3 (NLP Tools)**

- Vector Space Models for NLP
- Document Similarity Demo, Inverted Index, Exercise
- Vector Representation of words
- Understanding of text
- Bigram model and Trigram model
- Singular value decomposition
- Query Processing
- Examples of word prediction

# **Session 4 (Mathematical tools for NLP)**

- Introduction to Probability in the context of NLP
- Joint and Conditional Probabilities, independence with examples
- > The definition of probabilistic language model
- Chain rule and Markov assumption
- Generative Models
- Bigram and Trigram Language models peeking inside the model building

## **Session 5 (Advanced ANN Model)**

- Feedforward and Backpropagation Neural Network
- ▶ BPTT

#### **Session 6 (Word to Vector Problems)**

- Introduction Word to Vector
- > CBOW and Skip-Gram Models
- One word learning architecture
- Forward pass for Word2Vec
- Building Skip-gram model using Python
- Reduction of complexity sub-sampling, negative sampling
- Binary Tree, Hierarchical Softmax
- Mapping the output layer to Softmax
- Updating the weights using hierarchical softmax
- Discussion on the results obtained from word2vec

# **Session 7 (Sequence Learning)**

- > ANN as a LM and its limitations
- Sequence Learning and its applications
- Introduction to Recurrent Neural Network
- > RNN Based Language Model
- ▶ BPTT Forward Pass
- > LSTM
- Exploding and vanishing gradient
- ➢ GRU

## **Session 8 (Encoders and Decoders)**

- Encoder-Decoder model for Neural Machine Translation
- RNN Based Machine Translation
- Recap and Connecting Bloom Taxonomy with Machine Learning

- > Introduction to Attenuation based Translation
- > Introduction to Conversion Modeling
- > A few examples in Conversation Modeling

Session 9 (Project Work)